Image Fusion for Vascular Procedures

The impact and continuing development of image fusion for planning and guiding vascular repair.

BY STÉPHAN HAULON, MD, PhD; DOMINIQUE FABRE, MD, PhD; JUSTINE MOUGIN, MD; PHILIPPE CHARBONNEAU, MD; ANTOINE GIRAULT, MD; MAXIME RAUX, MD; AND YANN GOUËFFIC, MD, PhD

Imaging technology advancements over the past decade have radically changed vascular surgery practice, accelerating the trend from an open to an endovascular approach and supporting the development of increasingly complex minimally invasive procedures in hybrid operating rooms (HORs). Among advanced imaging features available in modern HORs, image fusion consists of overlaying clinical information from multiple image types and modalities, typically vascular anatomy from preoperative CT/magnetic resonance or preoperative cone-beam CT (CBCT) over live fluoroscopy, providing a continuous three-dimensional (3D)/two-dimensional (2D) overlay for augmented live guidance.

Although several publications have reported the value of image fusion in guiding endovascular aneurysm repair (EVAR), thoracic EVAR, and fenestrated/branched EVAR, similar benefits have been suggested in aortic dissection repair cases, aortic arch repair (Figure 1), aortoiliac and lower limb chronic total occlusion recanalization (Figure 2), carotid stenting, and type II endoleak embolization (Figure 3).

Figure 1. EVAR guided by image fusion (Discovery IGS 740 HOR equipped with EVAR Assist, GE Healthcare). The 3D model associates the aortic silhouette with the landmarks positioned by the operator. Graft landing zone and target visceral (A) and supra-aortic (B) vessel ostia are identified with planning circles, with optimal gantry angulations for their selection stored during planning and recalled from tableside for guidance. Several rendering modes and opacity options are available to display landmarks without obscuring live fluoroscopic visibility. Image fusion also allows gantry and table positioning without the use of x-ray, further reducing radiation exposure.

Figure 2. Endovascular recanalization of the superficial femoral (A) and iliac (B, C) arteries guided by image fusion. Vessel centerline and lumen semiautomatically extracted from the preoperative CT (Vessel Assist, GE Healthcare), with manual adjustment of the recanalization path through the occlusion. Planning lines defined on CT to provide lumen boundaries, avoiding calcifications, and planned stent position. Calcifications extracted from CT are used as landmarks for accurate registration.
EVOLUTION OF FUSION IMAGE TECHNOLOGY

Originally simply based on a volume rendering of the vascular anatomy, image fusion has evolved toward a more elaborate 3D model that integrates the surgeon’s operating plan. This strategy can include planning for proximal and distal stent graft landing zones, ostia of target vessels with optimal gantry angulations for catheterization (Figure 1 shows the lateral view for superior mesenteric artery catheterization), dissected aorta true and false lumen entry tears, and occluded vessel centerline and lumen boundaries along the planned recanalization pathway (Figure 2). Thus, standard 2D fluoroscopy is reshaped into a live augmented fluoroscopy environment.

Beyond enhancing operator comfort and confidence, adoption of image fusion into regular practice significantly impacts technical success by helping surgeons operate per plan in deploying devices with greater accuracy while reducing procedure time, operator and patient radiation dose, and contrast media volume. Image fusion thus benefits all cases, whether simple or complex.

Although earlier iterations of fusion required 3D/3D registration using a preoperative CBCT, fusion has become easier to use, now only requiring registration on two 2D views, with full control from tableside. With the initial registration based on bones and calcifications, registration typically needs fine-tuning from tableside based on angiographic runs. Ease-of-use improvements along with step-by-step guided workflows have reduced the operator learning curve and facilitated standardization between sites. Further automation to simplify workflows, as well as more evidence of clinical outcomes, are expected to lead to wider adoption of the technology by the community and further-reaching benefits to patients.

FUTURE DIRECTIONS

Several challenges remain to be tackled over the next decade. Image fusion should aim to compensate for vascular distortion, especially of the iliac and the target visceral arteries, by including real-time or simulated aortic deformation due to stiff endovascular material insertion in the 3D overlaid model. Fusion inaccuracies due to arm position differences between CT and the live procedure, as well as cardiac and respiratory motion, should also be compensated for to improve guidance in arch repair cases.

New technologies such as device electromagnetic or image-based live tracking and other modalities such as 3D intravascular ultrasound may also offer new horizons, possibly enhancing current image fusion technology into a contrast-free, radiation-free, dynamically and nonrigidly registered new guidance option.

Stéphan Haulon, MD, PhD
Aortic Centre, Vascular Surgery
Fondation Saint Joseph Marie Lannelongue
Paris, France
s.haulon@hml.fr
Disclosures: Consultant to GE Healthcare.

Dominique Fabre, MD, PhD
Aortic Centre, Vascular Surgery
Fondation Saint Joseph Marie Lannelongue
Paris, France
Disclosures: None.

Maxime Raux, MD
Aortic Centre, Vascular Surgery
Fondation Saint Joseph Marie Lannelongue
Paris, France
Disclosures: None.

Yann Gouëffic, MD, PhD
Aortic Centre, Vascular Surgery
Fondation Saint Joseph Marie Lannelongue
Paris, France
Disclosures: None.

Stéphan Haulon, MD, PhD
Aortic Centre, Vascular Surgery
Fondation Saint Joseph Marie Lannelongue
Paris, France
s.haulon@hml.fr

Disclosures: None.

Maxime Raux, MD
Aortic Centre, Vascular Surgery
Fondation Saint Joseph Marie Lannelongue
Paris, France
Disclosures: None.

Yann Gouëffic, MD, PhD
Aortic Centre, Vascular Surgery
Fondation Saint Joseph Marie Lannelongue
Paris, France
Disclosures: None.

Disclosures: None.